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Abstract- In this paper a generalized elasto-plastic damage model for the analysis of multiphase
frictional composite materials is presented. Details of the derivation of the secant and tangent
constitutive equations are given. Mixing theory is used to insert the basic constitutive expressions
for each substance on the multiphase composite solid. Details of the numerical implementation of
the model into a general non-linear finite element solution scheme are presented. Some examples of
linear and non-linear behaviour of composites are given. Copyright © 1996 Elsevier Science Ltd.
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index: implies "cth" compounding substance
index: implies referential configuration
plastic and non-plastic variables
mechanical dissipation
Helmholtz free energy, elastic and plastic parts
fictitious elastic-strain proposed by Green-Naghdi
elastic strain tensor-free variable of the mechanical problem
plastic strain rate defined in the material configuration
temperature-free variable of the thermal problem
referential temperature
second Piola Kirchoff stress tensor
right Cauchy-Green tensor
deformation gradient
set of m internal plastic variables
set of r internal non-plastic (damage) variables
density in the referential configuration
volume fraction of the "cth" substance
set of s internal variables for the "cth" compound

density in the material 0 referential configuration
secant damaged constitutive tensor
initial undamaged constitutive tensor
tangent damaged constitutive tensor
tangent elasto-plastic damaged constitutive tensor
transformation function from the real damage space to a fictitious equivalent non-damaged
space
set of r internal no-plastic variables
isotropic internal damage variable proposed by Kachanov
plastic yield function
plastic potential function
constant value
scalar function of tensorial stress argument
hardening function of the temperature phenomenon
hardening function of the plastic phenomenon
damage plastic variable
plastic consistency factor

plastic flow rule

plastic function of the evolution inner variables
tensor to be defined for each plastic inner variable
equivalent stress function of tensorial arguments
predictor undamaged stress tensor
limit criterion for stiffness degradation or damage
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the damage function
threshold damage level
scalar function of uniaxial strength, interpreted as a damage hardening function
damage consistency factor
referential and current configuration body loads
referential and current configuration surface loads
referential volume
referential surface where the acting traction loads
jacobian determinant
thermal dilatancy tensor
residual forces
external forces
maximum dissipate fracture energy
maximum compression strength at the yield limit
maximum compression strength at the peak limit
maximum compression strain at the peak limit
initial young module.

I. INTRODUCTION

Bulk composite materials and those materials composed by a matrix with short fibres
(whiskers) and/or long oriented fibres, typical in laminate composites, have a global physical
behaviour influenced by the mechanical characteristic of each simple compounding and by
its topology (Rouvray and Haug, 1989; (Pickett et al., 1989). Several phenomena such as
their anisotropy with directional irrecoverable strains, micro-cracking, loss of the stiffness
and rheological behaviour occur over each simple compounding irrespectibly if this is of
bulk or fibre kind. Besides the influence of these phenomena, other effects are produced in
the compoundings interfaces due to the loss of kinematic compatibility. This leads to a loss
of integrity in the whole composite (typically named delamination phenomenon). This loss
of kinematic compatibility is also named intercompounding cracking in bulk materials and
fibre matrix debonding in fiber-matrix materials (Rouvray and Haug, 1989). All these
phenomena induce a global strain softening within the composite material reaching a total
loss ofglobal strength. During the inelastic behaviour the dissipated energy can be computed
as the sum of the contribution from each compounding plus the interface dissipation.

Micro and macro-models are the two alternatives to study the mechanical behaviour
of composite materials. Micro-models focus the study at micro-mechanical level of the
interatomic bounding and the integrity of the composite beyond the damage point limit
(Obraztsov and Vasilev, 1982). Although micro-models are quite expensive for practical
purposes they can be successfully used in the modelling of composite material behaviour.
Macro-mechanical models express the whole composite constitutive behaviour as that of a
single material. This information can only be achieved by means of experimental analyses.

Most existing macro-mechanical models are based on mixing materials theory. This
allows the study of the composite mechanical behaviour as a combination of several single
compoundings, satisfying an appropriate closing equation. This equation establishes the
inter-material kinematic conditions and in the simplest case, chosen in this work, it assumes
perfect compatibility between the different compoundings. The closing equation can include
more complex inter-material phenomena as delamination, debonding or any other kine­
matic behaviour. Although this equation is an important condition of each mixing theory
it does not change the basic principles establishing for the theory of the interaction between
the compounding substances.

In this paper a macro-model adequate for analysis of the non-linear mechanical
response of composite materials is presented. The model is based on the mixture of the
basic substances of the composite and it allows the evaluation of the inter-dependence
between the constitutive behaviour of the different compounding materials. The behaviour
of each compound is modelled by a general elasto-plastic damage model, termed here "base
model", adequate for analysis ofmetals and geomaterials. The different base models for each
compound are combined using mixing theory to simulate the behaviour of the composite
multiphase material.

Mixing theory is very adequate to explain the behaviour of a composite solid. This
theory is based on the principle of interaction of the compounding substances with the
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following assumptions: (i) each infinitesimal volume of a composite is filled by a finite
number of compounding substances; (ii) each compound participates in the behaviour of
the composite in the same volume proportion; (iii) all compounds are subjected to the
same strains (closing equation or compatibility concept) and (iv) the volume occupied by
each compound is much smaller than the total volume of the composite. Assumption (ii)
implies an homogeneous distribution of all compounds in a certain region of the composite.
The interaction between the different compounds, each one defined by an appropriate
constitutive law, yields the overall constitutive behaviour of the composite in terms of the
percentage volume occupied by each compound and its distribution within the composite.

Mixing theory was studied in detail by Trusdell and Toupin (1960) and a few years
later by Green and Naghdi (1965). Years later Ortiz and Popov (1982) used mixing theory
to propose a two phase model for analysis of concrete.

In this paper mixing theory is used to propose a non-linear constitutive model for
multiphase composite materials. Each phase can have a general anisotropic behaviour
defined by means of an equivalent isotropic model recently proposed by the authors (Oller
et al., 1995). For simplicity only isotropic single phases are treated in this paper. Also, each
phase can act as the matrix part of the composite, or else as short or long reinforcing fibres.

The layout of the paper is the following. In the next section the basis of the isotropic
elasto-plastic model for each of the individual compounding substances is presented. Details
of the mixing theory used to reproduce the overall behaviour of the composite are given
next. The algorithm for numerical implementation of the model within a non-linear finite
element solution scheme is then detailed. Finally, some examples ofapplication to the linear
and non-linear analysis of composites are given.

2. GENERALIZED PLASTIC DAMAGE BASE MODEL

In this section a base constitutive model (Oller, 1988; Lubliner et al., 1989; Oller,
1989), describing the non linear behaviour of each of the compounding substances of a
multiphase composite material is presented. For simplicity in the notation, in this section
the compounding subindex "Oc" in the variables definition will be omitted. This model
will be used in conjunction with mixing theory to derive the overall constitutive equation
for the composite in a later section.

The base model uses plastic damage theory and it is formulated in a material con­
figuration using total Lagrangian kinematics. The model is adequate to treat problems with
large plastic strains and small elastic strains (Lubliner et al., 1989; Oller, 1989). Weak
thermal-mechanical coupling is assumed and therefore only stable thermal states can be
treated. The model as presented here can simulate the behaviour of metallic and ceramic
materials and geomaterials.

The secant constitutive equation and the mechanical dissipation for an uncoupled
thermo-mechanical problem is obtained in the standard manner (via Clasius-Planck
inequality (Malvern, 1969; Lubliner, 1972; (Lubliner, 1985), as:

(1)

a\ll .
af3)3' ): 0

'----y---J

,;:;,np
~m

(2)

In eqn (2) (.)P and onp denote the plastic and non-plastic contributions to the mech­
anical dissipation 2 m , \II is the free energy, E~i is the elastic strain taken as the free variable
of the mechanical problem, () is the temperature as a free variable of the thermal problem,
Sij is the second Piola Kirchoff stress tensor, :xm is the set of minternal plastic variables, f3r
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is the set of r internal non-plastic (damage) variables, and rno is the density in the material
configuration.

2.1. Free energy and Green-Naghdi strain tensor
As already mentioned, the base model is formulated in a material configuration for

thermally stable problems (i.e. with zero temporal changes of temperatures) and using the
concept of uncoupled elasticity from Green-Naghdi theory (Green and Naghdi, 1964;
Lubliner, 1972; Lubliner, 1990; Garcia Garino and Oliver, 1992). Under these assumptions
the free energy can be written as the sum of two independent elastic and plastic contri­
butions, i.e.

(3')

The elastic free energy is assumed to be a scalar quadratic function of the form:

(3")

where the elastic strain tensor Eij coincides with the fictitious elastic strain proposed by
Green-Naghdi (Green and Naghdi, 1964; Lubliner, 1990), and it is obtained as the differ­
ence between the total and plastic Lagrangean strains, i.e.

E~j = Eii-Eft = ~(Cii-li)-lt Eftdt.- . .
o

(4)

In eqn (4), Cli = Fi,F,j is the right Cauchy-Green tensor, Fij is the deformation gradient
and EfJ is the plastic strain rate defined in the material configuration by means of an
adequate evolution law to be described later. In eqn (3") C(}~kl is the secant constitutive
tensor depending on the non-plastic inner variables V and the temperature (), which can be
written in general form as:

(5)

where C(}~kl = AL(()) •1\l5kl +JiL(()) • (l5 ik l5jl + l5 al5jl) is the initial elastic stiffness of the undam­
aged material, J.L and JiL are the Lame coefficients and !l'(fJr) is a transformation function
from the real damage space to a fictitious equivalent non-damaged one (Oller, 1989). The
simplest expression for !l'(fJr) coincides with the isotropic form proposed by Kachanov
(1958) as !l'(fJr) = (1- d)r~], and in this case d =- {V}. Note that superindex 5 denotes
hereafter variables in the damaged material configuration.

2.2. Yield and plastic potential functions
The yield and the plastic potential functions are expressed in the material configuration

as:

(6)

where X is a constant value. In order to preserve the physical meaning of cohesion it is
required that both functions be a first degree homogeneous function of 5ij. Examples of
yield functions satisfying this condition are the standard Von-Mises or Tresca functions
for metals (Malvern, 1969; Lubliner, 1990) and those of Mohr-Coulomb, Drucker-Prager
and Lubliner (Oller, 1988; Lubliner et al., 1989), for geomaterials. In all cases the tem­
perature acts as the strain hardening function in the following form:
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(7)

where 0 ~ £(8) ~ 1 is a temperature function equal to zero for materials at fusion state
and to 1 for room temperature, C(KP) is the hardening function, and KP is the damage plastic
variable that in this case is the unique element of the am set of m = 1 internal plastic
variables. More details about these variables can be seen in the following specifics papers:
(Oller, 1988; Onate et al., 1988; Lubliner et al., 1989; Oller, 1989; Oller et al., 1990).

2.3. Evolution law for the plastic inner variables
The flow rule is defined in the standard Green-Naghdi form for plastic models defined

in the material configuration (Lubliner, 1984; Lubliner, 1986). This definition has been
extended to the evolution laws of the plastic inner variables, as:

(8)

where Ais obtained from the plastic consistency condition, (h;);s is a tensor to be defined
for each plastic inner variable (Oller, 1989; Lubliner et al., 1989) and Gr is the maximum
dissipate fracture energy (Lubliner et al., 1989; Oller et al., 1990).

2.4. Limit criterion for stiffness degradation or damage
An equivalent stress function is defined in the non-damage Piola-Kirchoff stress space,

as:

(9)

where S~ = C~kl(8)Ek' is a predictor stress tensor. A limit criterion for stiffness degradation
(Simo and Ju, 1987; Oliver et al., 1990), is defined in the Piola-Kirchoff space as:

Y - Y"(f3') = 0 or rgO(y, f3') = g(Y) -g(f3') = 0 (10)

where gO is a scalar positive function with positive derivative. In this particular case g(Y)
defines the damage function and g(f3') == g(Y'(f3')) is the threshold damage level as a
function of the uniaxial strength Y'(f3') which can be interpreted as a damage hardening
function.

2.5. Evolution law for damage inner variables
The evolution law for the non-plastic inner variables f3' has the following form:

. (argO) / ac'/' • ) (argO)
f3' = jl ay , = \as£'f5°ijk,(8)Ek, ay,

(S)

where jl is obtained from the damage consistency condition* expressed as ~o = O.

* The damage consistency condition (Bazant and Kim 1979), is defined by the following expression:

• D ag. og a!r.
'1J =-Y---p' =0.

ay' ay" ap'
'----y----'

.9'.

Making use of the limit criterion of stiffness degradation [eqn (10)], in the last expression, result:

. '. . ay·o ay 0 •
Y =:'/' = f1 = -S = -C(fk,«(J)Ekl .asz. IJ as;~ I)

(11 )
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2.6. Secant constitutive equation
Substituting into eqn (1) the expression of the free energy formulated in eqn (3), the

secant constitutive equation (Oller, 1988; Oller, 1989; Lubliner et al., 1989), is obtained
as:

(12)

where E~j = Eij - E~ is the fictitious elastic strain tensor already mentioned.

2.7. Tangent constitutive equation
For stable thermal states, the temporal derivative of eqn (12) leads to:

= 0 thermal stable process

and using eqns (5) and (12), results:

(13)

where "r" is the number of non-plastic inner variables [r = 1 for Kachanov's (1958)
isotropic damage theory]. The damage rate variable for monotonicly increasing loading
can be written from eqn (11) as :

(14)

Substituting eqn (14) into eqn (13) the stress-strain rate relationship can be written as:

(15)

where Cfj~jkl(f3', 8) is given by:

(16)

Note that in eqn (15) the stress rates recover the standard form for Cfjijkl == Cfj~kl' This
equivalence occurs for undamaged states, i.e. when L, 82!(P')/8P' = o.

Using now the plastic consistency conditions j';s = 0, and taking into account that the
damage consistency condition rJD = 0 has already been imposed in eqn (11) to derive the
parameter fl., the following rate constitutive equation is obtained:
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(17)

where:

(18)
[

S {i3'!J
S
}][ e {O:F

S
}]'liijrs asrs 'likltu astu

'liJJ/Aj3r, e) = 'li
Ukl

- _ n (a:FS a'!JS) [{8:FS} S {a'!JS}]
L: m (hm)/q as + as 'linprv as
l~ 1 Or/. Iq np rv

A

is the tangent e1asto-p1astic constitutive tensor, where A is the plastic hardening parameter.
It is deduced from eqn (16) that 'liJfkl(j3r, e) is symmetric only when the following pro­
portionality rule is satisfied (Lubliner, 1984; Oller, 1988; Lub1iner et al., 1989):

(19)

This isotropic formulation is an extension of recent work from the authors group
(Oller, 1988; Ofiate et al., 1988; Lubliner et al., 1989; Oller, 1989; Oller et al., 1990; Oliver
et al., 1990). An extension to deal with anisotropic plasticity can be found in the reference
(Oller et al., 1995).

2.8. Equilibrium equation
The energy equilibrium equation for a thermally stable solid under quasistatic loading

can be written in the material configuration using the standard power rate form as (Zien­
kiewicz and Taylor, 1989; Oller, 1989) :

(20)

where b~ = J b i and t~ = J t i are body and surface loads acting over the volume V and the
surface 51' of the solid, respectively, J = II Fij II, Fu is the deformation gradient and the
current Pio1a-Kirchoff tensor stress is

(21)

3. CONSTITUTIVE MODEL BASED ON MIXING THEORY

We present here a theory for modelling the interaction of compounding substances
(Trusdell and Toupin, 1960; Green and Naghdi, 1965; Ortiz and Popov, 1982; Ortiz and
Popov, 1982) of a mu1tiphase material. This theory based on local continuum mechanics
allows the consideration of the simultaneous combination of the different constitutive
behaviours of each substance (i.e. elastic, e1asto-p1astic, e1asto-britt1e, e1asto-damage, etc.).
It is assumed here that the behaviour of each compounding substance follows precisely the
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Fig. I. Schematic flow diagram for non-linear solution of a multiphase material problem.

elasto-plastic damage material model previously described. However, other constitutive
combinations are obviously possible (Fig. 1).

The simplest closing equation chosen in this work is based on the assumption of
fully inter-compounding compatibility and the neglection of atomic diffusion (i.e. the
temperatures are moderate), therefore the following strain compatibility is satisfied:

In composite materials the free energy can be written as

n

\¥(E~j' e, am, [3') = \¥(Eij, e, E'ij, am, f3r) = L kc\¥c(Eij' e, (p,)J
~ ('=1

Ps

(22)

(23)

where \¥c(Eij , e, (pJJ is the free energy corresponding to each of the nth compounding
substances in the mixture, k c = d Vjd V is the volume fraction of that substance and (P,)c is
a set of inner variables for the "cth

" compound. Note that the following condition is
satisfied:
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(24)

which implies that for single phase materials the free energy expression of eqn (3) is
recovered.

Following an identical procedure as for single-phase materials (Lubliner, 1985; Oller,
1988; Oller, 1989; Lubliner et al., 1989; Ofiate et al., 1991), the secant constitutive equation
for the whole composite is obtained from the Clasius-Planck inequality, i.e.

S = 0 iN'(Epq , 8,Pr) = 0 ~ k (J'Pc(Epq , 8, (PrL) = ~ k (S)
') m ;")E mL..-c "E L..-CI)C

(/ ij c= 1 0 ij c= t
(25)

where (SijL is the second Piola-Kirchoff stress tensor in the ccth corresponding substance.
Also, from the Clausius-Planck inequality the following thermodynamic expression

for the mechanical dissipation is obtained

(26)

From eqn (25) the following thermodynamic expressions can be derived for the whole
composite material:

Tangent constitutive tensor

(27')

Thermal dilatancy tensor

(27")

The stress-strain relationship IS derived from the strain compatibility condition
between substances [eqn (22)] as:

(Ei)c = Eij = ~cg~k/ (!3",8))C(Sk/),; + (E),), + (a~U8 - 80 ).

(E;),

(28)

(29)

The secant constitutive equation for the whole composite material (25) is rewritten as:

I Sij = ct, kJSij)c = J, k,(cg~k/(!3" 8)),(E'k/)c = cg7jk/(!3-" 8)Ek/ I
where the elastic strain for each compounding can be expressed as: (EDc =
Eij- (E;jL- (afU8-80); and for the composite as: E~j = Eij-E~-a~(8-80). From the
last two equalities of eqn (29) and taking into account eqns (22) and (27'), it is possible to
write the total plastic strain for the composite material. Thus,

n

Sij = L kc(cg~k/!3s, 8))c(E'ka,
c= I

n n

= I kJcg7jk/(!3" 8)),Ek/- L k,(cg~k/(!3" 8))c(Ek/L
c= I ('=1
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n

- L kc(~~kl(f3" 8nc(a~)cC8-8o)
c=1

Equaling the right hand side of the last two equations, gives the plastic strain for the whole
composite material:

with:

(31 )

In the derivation of eqn (30) use of the following relationship obtained from eqns (22) and
(27') has been made

n

~~kl(f3" 8)Ek1 = L kc(~~kl(f3s, 8nJkl'
c=]

(32)

Substituting eqn (32) into (28) and using eqn (29) it is possible to obtain the stress tensor
for each phase as:

(34)

Equation (34) gives the stress distribution for each compounding substance of the
multiphase composite.

4. NUMERICAL IMPLEMENTATION OF THE MULTIPHASE CONSTITUTIVE MODEL

Appendix I presents a schematic view of the algorithm to implement the multiphase
plastic-damage model into a general non-linear finite element solution scheme.

5. EXAMPLES

The previous general theory will be applied to three relatively simple examples to show
the applicability and potential of the present model.

5.1. Modelling ofelastic behaviour ofa fibre composite material
This trivial example is presented to show the capability of the elastic part of the present

model to reproduce the elastic tension behaviour of the longitudinal fibres in a composite
material.
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Fig. 2. Uniaxially loaded specimen. Geometry, boundary conditions, loading and finite element
mesh.
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Table 1 shows the variation of the load ratio PFIPc for the tension specimen test,
carried by the longitudinal fibres and the composite, vs the Young's modulus ratio EFIEc ,
for several values of the fraction volume of fibres k F • Results are in total agreement with
those obtained by Jayatilaka (1979) using a simple composite model based on the assump­
tion of full compatibility between elastic fibres and matrix.

5.2. Uniaxially loaded specimen
The model has also been tested in the analysis of a plane rectangular specimen, under

axial loading acting as shown in Fig. 2. Plane stress conditions have been assumed. The
geometry has been discretized using a simple mesh of 16 standard four-node quadrilateral
elements. The base compounding materials are steel, aluminium and brass. An homo­
geneous distribution has been assumed with the respective participation percentages as
shown in Table 2. Also in the same table, the corresponding properties for each isotropic
base material are detailed: E and v are Young and Poisson modulus, fcom p is the elastic
limit of compression strength, H is the slope of the hardening function C(KP) and k c is the
volume fraction of the "qth" substance. The three compounding materials are considered
under associated plastic behaviour without damage, using Von-Mises yield functions. The
maximum dissipation energy Gr for each compounding is considered unlimited.

Numerical results for the stress field in the composite are shown in Fig. 3 where
the theoretical results are also plotted. Also, Fig. 3 shows the behaviour for each single
compounding phase. Good agreement between the numerical and theoretical results is
obtained.

The behaviour of this ideal bulk composite has many important aspects to remark.
The overall composite behaviour (curve d of Fig. 3) remains in the elastic range until point
1. Then a slight plastification due to the tension--eompression stresses acting on the brass
occurs (curve c). This stress state induces a small plastification in the brass (point 2 of curve
c) and also indirectly on the total composite (point 1 of curve d). The biaxial stress state in
each compound results from the Poisson expansion effect on the other two compounds.

Brass (curve c) reaches the maximum stress (point 3) for strains of 10- 3 while steel
just then reaches its plastification state (point 6 of curve a). At the same time a small
plastification initiates in the aluminium (point 4 of curve b). The overall composite response
at this instant (curve d) undergoes a slope change (point 5-8). This is mainly due to the
strong steel contribution (point 6-9). In the aluminium compounding (curve b), this slope
change is produced at point 7 and this is followed by a new slope change in the overall
composite response (point 8 of curve d) and on the steel compounding (point 9 of curve a)
too.

Table I. Fraction of fibres load Pm,,'; PCompo,,,,

0.50
1.00

10.00
40.00
60.00

5.26315
10.00000
52.63157
81.63265
86.95652

11.11111
20.00000
71.42857
90.90909
93.75000

25.00000
40.00000
86.95650
96.38554
97.56097
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STRESS STRAIN Curves
Fig. 3. Strain-stress curves at the centre of the sample for the: (a) steel, (b) aluminium, (c) brass,

(d) numerical results, (e) theoretical results.

Table 2. Properties of compounding materials

Component E JearnP. H Vol. fracto

[c:'] [c:'] L:,] k,[%]

Steel 2.100E6 0.30 2100.0 2.1E5 40.0
Aluminium 0.725E6 0.25 1100.0 0.5E5 40.0
Brass 0.800E6 0.20 650.0 0.0 20.0

This example shows the capability of the present model to simulate complex bulk
composite behaviour, as well the individual response of each compounding.

5.3. Fracture test for a composite material
This example has been oriented to show the capability of the present theory to model

fracture phenomena in composites. A plane rectangular specimen is subjected to an imposed
displacement acting as shown in Fig. 4. Plane stress conditions have been assumed. The
geometry has been discretized using a mesh of 16 bilinear quadrilaterals as shown in the
figure. The type and combination of isotropic materials are the same as those reported in

I~ , /11

b "- ~v

I~
i IAI

~,

Fig. 4. Test specimen. Geometry, boundary conditions, loading and finite element mesh.
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o. 0.005 0.01 0.015 0.02

Strain
0.02S 0.03 0.035

Fig. 5. Stress-strain curves: • At the centre of the sample for the composite material (curve a), steel
(curve b), aluminium (curve c) and brass (curve d). • At the ends ofthe sample for the steel material

(curve b'), aluminium (curve c') and brass (curve d').

Table 3. The three compounding materials, as in the previous example, are considered
under plastic behaviour without damage, using a Von-Mises yield and plastic potential
function. The maximum dissipation energy Gf for each compounding is limited to the values
reported in Table 3. The C(KP) stress-strain hardening evolution curve for each compounding
is taken to be quadratic until the peak value f~~arrp, E~~arrp), and then cubic until the zero
strength point.

For each of the three compounding materials the main difference is the response
beyond the peak stress showing strain-softening behaviour. Figure 5 displays the stress­
strain curve for the composite and the different compounding materials. For the composite
(curve a) the stress peak is reached at a value of S = 1768.0 kpjcm2

. Figure 6 shows a detail
of the unloading history of the points located at the sample end zone.

Figure 7 shows the load-displacement curve representing the overall composite behav­
iour. The peak load is reached for P = 35500.0 kp and (j = 0.4 cm.

Figure 8a displays the deformed mesh showing the strong strain localization effect at
the centre. Also, note in Fig. 8b the high concentration of plastic strain. This can be taken
as a measure of the intensity of the micro-fracture process in the sample (Oller, 1988;
Lubliner et al., 1989).

Table 3. Properties of compounding materials

Compon. E v .[Comp . Gf
j'Comp EComp Vol. fracto

Pe;,k Peak

[c:'] [c:2 ] [~~] [c:']
k,[%]

Steel 2.100E6 0.30 2100.0 500.0 2500.0 0.004 40.0
Aluminium 0.725E6 0.25 1100.0 300.0 1500.0 0.004 40.0
Brass 0.800E6 0.20 650.0 200.0 1000.0 0.003 20.0
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LP: Localization Point
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Fig. 6. Detail of the stress-strain curves at the sample ends for the steel (curve b'), aluminium
(curve c') and brass (curve d').
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Fig. 7. Load-displacement response for the composite material.
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Fig. 8. (a) Mesh deformation at the end of the numerical test. (b) Principal plastic deformation
vectors at the end of the numerical test.

6. CONCLUDING REMARKS

The theoretical framework presented combines basic concepts from muItiphase mixing
theory with an elasto-plastic damage base constitutive model. Such a framework provides
a powerful tool for modelling the behaviour of composite materials. Moreover, the consti­
tutive law presented can simulate the fracture behaviour of each compound, in addition to
that of the overall composite_

In the present work isotropic material conditions for each compound have been
assumed, although overall anisotropy effects can be simply included (see Oller et al., 1995).
Also, induced anisotropic behaviour is intrinsic in the constitutive law of each compound.
This allows modelling of localization phenomena typical of softening materials. Extensions
of the model to treat layer composite materials are in development by the authors.
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APPENDIX

Non-linearfinite element solution scheme for the multiphase composite model
(I) Define the constitutive matrix and the participation of the different phases:

n(CS):-1 = Sfn(f3):.-1 1(CO)~

=> LOOP OVER LOAD INCREMENTS: nth increment,

=> LOOP OVER CONVERGENCE ITERATIONS: ith iteration.

(2) Compute the tangent stiffness matrix for each element and the structure:

n(K(e)'-1 = r B:n(cr)'-I :BdV
Jv

(3) Compute the nodal displacements increments and the strains in the composite:

n(flU)' = n(flU)i-1 +n(bU)'

n(U)i = n-l(u)+n(flU)i

neE)' = V/(U)i

"(flE)i = n(E)i _n-I (E)

=> LOOP OVER THE c compounding substances:
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Integration of constitutive model
(4) Compute the predicted non-damaged stresses for each compound:

..n(sO); = '(CO):' : neE)'

n(C');. = n(cS
);.

(5) Integrate the damage constitutive equation for each compound (Euler Backward Scheme):

=LOOP OVER INNER CONVERGENCE ITERATIONS:}'h iteration:

+
n(s):; = !l'n(p);; n(S);1 1

"(S):' = s(n(S):J)

Is: ,§~(S,., P'h~" ,:; 0 =(no damage) GOTO 7 (damage)

j =J+ I Go back to+.

(6) Compute the damage tangent constitutive matrix for each compound:

(T)':'
nee):. = !l'"(P);J 1 (C')? + __'_@n(S)::l

!l'n (P);J

(7) Compute the predicted stress for each plastic compound:

n(5);. = "(5)::'

"(S*); = "(S):-!l'"(P);:' '(CO)? :"-1(£"),.

(8) Integrate the plastic constitutive equation for each compound (Euler Backward Scheme):

= LOOP OVER INNER CONVERGENCE ITERATIONS: k'h iteration:

for k = I : "(S):·o = "(5*):., "(1'i£");0 = 0

++"(S);·k = "(5);k-1 _' (CS)o: "(I'i£"),.k-l

Is: J;'(S,., o:'"h:' , ,:; 0 =(no yielding) GOTO 10

II
(yielding)

ij

"(o:,"):,k = "(o:,");:k , +n(l'io:'");:'

k = k + I Go back to ++.
(9) Compute the plastic tangent constitutive matrix for each phase:

2517

n(eep );, =

c = c+ I Go back to ••.
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(10) Compute:
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{

n(C'):.,. without plasticity
"(CT

): =
n(cP)~, with plasticity

(II) Compute the residual force vector and check convergence:

n(F")); = f B·n(S)'dV-Fresld '. ext
V

fI(Fresid)i = A;~ I n(F~~~id)i

Is II F''''d II > elF,,, I' ? = i = i+ I. Go back to 4.

STOP


